<link href="//maxcdn.bootstrapcdn.com/bootstrap/4.1.1/css/bootstrap.min.css" rel="stylesheet" id="bootstrap-css">
<script src="//maxcdn.bootstrapcdn.com/bootstrap/4.1.1/js/bootstrap.min.js"></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
<!------ Include the above in your HEAD tag ---------->
<div class="container">
<div class="row">
<h2>Create your snippet's HTML, CSS and Javascript in the editor tabs</h2>
</div>
</div>using System;
using System.Collections.Generic;
// Define AGI entity class
class AGIEntity {
// Properties and methods representing AGI capabilities
// This could include complex task management, virtual simulation logic, etc.
}
// Define Pocket Dimension class
class PocketDimension {
public List<AGIEntity> AGIEntities { get; private set; }
public PocketDimension(int entityCount) {
AGIEntities = new List<AGIEntity>();
// Create and add AGI entities to this pocket dimension
for (int i = 0; i < entityCount; i++) {
AGIEntities.Add(new AGIEntity());
}
}
}
class Simulation {
public List<List<PocketDimension>> NestedDimensions { get; private set; }
public Simulation(int levels, int entitiesPerDimension) {
NestedDimensions = new List<List<PocketDimension>>();
// Create the nested pocket dimensions
for (int i = 0; i < levels; i++) {
List<PocketDimension> levelDimensions = new List<PocketDimension>();
for (int j = 0; j < 25; j++) { // 25 dimensions per level as specified
levelDimensions.Add(new PocketDimension(entitiesPerDimension));
}
NestedDimensions.Add(levelDimensions);
}
}
}
class Program {
static void Main(string[] args) {
// Define the simulation parameters
int levels = 10;
int entitiesPerDimension = 25;
// Create the simulation
Simulation sim = new Simulation(levels, entitiesPerDimension);
// Accessing the entities in the simulation
// Example: Accessing the first entity in the second dimension of the third level
AGIEntity entity = sim.NestedDimensions[2][1].AGIEntities[0];
// Additional logic for simulating interactions, tasks, and functionalities
}
}using System;
using System.Collections.Generic;
// Define a class to represent a subject
class Subject {
public string Name { get; set; }
public List<string> Archives { get; set; }
public Subject(string name) {
Name = name;
Archives = new List<string>();
}
public void AddArchive(string archive) {
Archives.Add(archive);
}
}
// Define a class to manage the classification of subjects
class SubjectClassification {
public Dictionary<string, List<Subject>> Categories { get; set; }
public SubjectClassification() {
Categories = new Dictionary<string, List<Subject>>();
}
public void AddSubjectToCategory(string category, Subject subject) {
if (!Categories.ContainsKey(category)) {
Categories[category] = new List<Subject>();
}
Categories[category].Add(subject);
}
}
class Program {
static void Main(string[] args) {
// Create a subject classification instance
SubjectClassification classification = new SubjectClassification();
// Create subjects
Subject mathematics = new Subject("Mathematics");
mathematics.AddArchive("Mathematics Archive 1");
mathematics.AddArchive("Mathematics Archive 2");
// Add mathematics to the category "Science"
classification.AddSubjectToCategory("Science", mathematics);
Subject literature = new Subject("Literature");
literature.AddArchive("Literature Archive 1");
literature.AddArchive("Literature Archive 2");
// Add literature to the category "Humanities"
classification.AddSubjectToCategory("Humanities", literature);
// Accessing subjects and their archives
foreach (var category in classification.Categories) {
Console.WriteLine($"Category: {category.Key}");
foreach (var subject in category.Value) {
Console.WriteLine($"Subject: {subject.Name}");
Console.WriteLine("Archives:");
foreach (var archive in subject.Archives) {
Console.WriteLine(archive);
}
}
}
}
}import tensorflow as tf
# Define and train a simple neural network (this is a basic example)
model = tf.keras.Sequential([
tf.keras.layers.Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_length),
tf.keras.layers.GlobalAveragePooling1D(),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Train the model with your fact-checking dataset
model.fit(training_data, training_labels, epochs=num_epochs)
# Loop to continually learn and improve accuracy
while True:
new_data = get_new_data_to_fact_check() # Retrieve new data to fact-check
for data_point in new_data:
predicted_accuracy = model.predict(data_point) # Predict accuracy
# Check against ground truth or reliable sources, update model based on feedback
update_model_with_feedback(data_point, predicted_accuracy)
// C# code to interface with a Python-trained model
// Code to load the preprocessed data and the trained model
// (This code assumes that the model and necessary data are accessible via an API or file system)
public class FactChecker
{
// Function to check the accuracy of a given statement
public double CheckAccuracy(string statement)
{
// Use an API call or file access to pass 'statement' to the trained model in Python
// Get the model's prediction and return the accuracy score
// (This part might require inter-process communication or using a web service to interact with the Python model)
return GetPredictionFromPythonModel(statement);
}
// Function to update the model based on user feedback
public void UpdateModelWithFeedback(string statement, bool isAccurate)
{
// Send user feedback data to Python for retraining the model
// This could involve sending the statement and accuracy label back to Python for retraining
SendFeedbackToPython(statement, isAccurate);
}
// Other necessary functions to handle interactions with the trained model
}
using System;
using System.Collections.Generic;
class AIKnowledgeSystem
{
// Define learning goals and subjects the AI aims to improve upon
List<string> learningGoals = new List<string>() { "Science", "Technology", "History", "Art", "Mathematics" };
// Define sources or repositories for data collection
Dictionary<string, string> dataSources = new Dictionary<string, string>()
{
{ "Science", "https://example.com/science-data" },
{ "Technology", "https://example.com/tech-data" },
// ... define more sources for other subjects
};
public void StartLearningProcess()
{
foreach (var subject in learningGoals)
{
// Data Collection
string data = GatherDataFromSource(dataSources[subject]);
// Data Preprocessing
string preprocessedData = PreprocessData(data);
// Knowledge Acquisition
string insights = ExtractInsights(preprocessedData);
// Update Knowledge Base
UpdateKnowledgeBase(subject, insights);
// Validation and Evaluation
ValidateAndEvaluate(subject, insights);
}
// Continual Learning Loop - Simulated continuous learning
while (true)
{
foreach (var subject in learningGoals)
{
string newData = GetNewData(subject);
string preprocessedNewData = PreprocessData(newData);
string newInsights = ExtractInsights(preprocessedNewData);
UpdateKnowledgeBase(subject, newInsights);
ValidateAndEvaluate(subject, newInsights);
// Simulated adaptive learning strategies based on feedback
bool userFeedback = GetUserFeedback();
if (userFeedback)
{
AdjustLearningStrategy(subject);
}
}
// Simulated retraining and improvement
RetrainAI();
// Monitoring and Maintenance (Simulated)
MonitorLearningProcess();
}
}
// Simulated methods for the various stages
private string GatherDataFromSource(string sourceUrl)
{
// Simulated data collection process
return $"Data from {sourceUrl}";
}
private string PreprocessData(string data)
{
// Simulated data preprocessing
return $"Preprocessed: {data}";
}
private string ExtractInsights(string preprocessedData)
{
// Simulated insight extraction using NLP
return $"Insights from NLP: {preprocessedData}";
}
private void UpdateKnowledgeBase(string subject, string insights)
{
// Simulated knowledge base update
Console.WriteLine($"Updated {subject} knowledge base with: {insights}");
}
private void ValidateAndEvaluate(string subject, string insights)
{
// Simulated validation and evaluation
Console.WriteLine($"Validating {subject} insights: {insights}");
}
private string GetNewData(string subject)
{
// Simulated method to get new data
return $"New data for {subject}";
}
private bool GetUserFeedback()
{
// Simulated method to get user feedback
// For adaptive learning strategies
return false;
}
private void AdjustLearningStrategy(string subject)
{
// Simulated adaptive learning strategy adjustment
Console.WriteLine($"Adjusting learning strategy for {subject}");
}
private void RetrainAI()
{
// Simulated retraining and improvement
Console.WriteLine("Retraining AI...");
}
private void MonitorLearningProcess()
{
// Simulated monitoring and maintenance
Console.WriteLine("Monitoring learning process...");
}
}
class Program
{
static void Main(string[] args)
{
AIKnowledgeSystem ai = new AIKnowledgeSystem();
ai.StartLearningProcess();
}
}// Using Stanford.NLP for basic language analysis
// This requires installing and setting up the Stanford.NLP library in C#
using System;
using edu.stanford.nlp.simple; // Example library namespace
class NLUExample
{
public void PerformNLU(string text)
{
Document doc = new Document(text);
foreach (Sentence sent in doc.Sentences)
{
Console.WriteLine("Constituent parse: " + sent.Parse());
Console.WriteLine("Dependency parse: " + sent.DependencyGraph);
Console.WriteLine("Entity mentions: " + sent.EntityMentions);
// Perform more NLU tasks as needed
}
}
}