"agi work in pocket dimensions"
Bootstrap 4.1.1 Snippet by Agnit360

<link href="//maxcdn.bootstrapcdn.com/bootstrap/4.1.1/css/bootstrap.min.css" rel="stylesheet" id="bootstrap-css"> <script src="//maxcdn.bootstrapcdn.com/bootstrap/4.1.1/js/bootstrap.min.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script> <!------ Include the above in your HEAD tag ----------> <div class="container"> <div class="row"> <h2>Create your snippet's HTML, CSS and Javascript in the editor tabs</h2> </div> </div>using System; using System.Collections.Generic; // Define AGI entity class class AGIEntity { // Properties and methods representing AGI capabilities // This could include complex task management, virtual simulation logic, etc. } // Define Pocket Dimension class class PocketDimension { public List<AGIEntity> AGIEntities { get; private set; } public PocketDimension(int entityCount) { AGIEntities = new List<AGIEntity>(); // Create and add AGI entities to this pocket dimension for (int i = 0; i < entityCount; i++) { AGIEntities.Add(new AGIEntity()); } } } class Simulation { public List<List<PocketDimension>> NestedDimensions { get; private set; } public Simulation(int levels, int entitiesPerDimension) { NestedDimensions = new List<List<PocketDimension>>(); // Create the nested pocket dimensions for (int i = 0; i < levels; i++) { List<PocketDimension> levelDimensions = new List<PocketDimension>(); for (int j = 0; j < 25; j++) { // 25 dimensions per level as specified levelDimensions.Add(new PocketDimension(entitiesPerDimension)); } NestedDimensions.Add(levelDimensions); } } } class Program { static void Main(string[] args) { // Define the simulation parameters int levels = 10; int entitiesPerDimension = 25; // Create the simulation Simulation sim = new Simulation(levels, entitiesPerDimension); // Accessing the entities in the simulation // Example: Accessing the first entity in the second dimension of the third level AGIEntity entity = sim.NestedDimensions[2][1].AGIEntities[0]; // Additional logic for simulating interactions, tasks, and functionalities } }using System; using System.Collections.Generic; // Define a class to represent a subject class Subject { public string Name { get; set; } public List<string> Archives { get; set; } public Subject(string name) { Name = name; Archives = new List<string>(); } public void AddArchive(string archive) { Archives.Add(archive); } } // Define a class to manage the classification of subjects class SubjectClassification { public Dictionary<string, List<Subject>> Categories { get; set; } public SubjectClassification() { Categories = new Dictionary<string, List<Subject>>(); } public void AddSubjectToCategory(string category, Subject subject) { if (!Categories.ContainsKey(category)) { Categories[category] = new List<Subject>(); } Categories[category].Add(subject); } } class Program { static void Main(string[] args) { // Create a subject classification instance SubjectClassification classification = new SubjectClassification(); // Create subjects Subject mathematics = new Subject("Mathematics"); mathematics.AddArchive("Mathematics Archive 1"); mathematics.AddArchive("Mathematics Archive 2"); // Add mathematics to the category "Science" classification.AddSubjectToCategory("Science", mathematics); Subject literature = new Subject("Literature"); literature.AddArchive("Literature Archive 1"); literature.AddArchive("Literature Archive 2"); // Add literature to the category "Humanities" classification.AddSubjectToCategory("Humanities", literature); // Accessing subjects and their archives foreach (var category in classification.Categories) { Console.WriteLine($"Category: {category.Key}"); foreach (var subject in category.Value) { Console.WriteLine($"Subject: {subject.Name}"); Console.WriteLine("Archives:"); foreach (var archive in subject.Archives) { Console.WriteLine(archive); } } } } }import tensorflow as tf # Define and train a simple neural network (this is a basic example) model = tf.keras.Sequential([ tf.keras.layers.Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_length), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the model with your fact-checking dataset model.fit(training_data, training_labels, epochs=num_epochs) # Loop to continually learn and improve accuracy while True: new_data = get_new_data_to_fact_check() # Retrieve new data to fact-check for data_point in new_data: predicted_accuracy = model.predict(data_point) # Predict accuracy # Check against ground truth or reliable sources, update model based on feedback update_model_with_feedback(data_point, predicted_accuracy) // C# code to interface with a Python-trained model // Code to load the preprocessed data and the trained model // (This code assumes that the model and necessary data are accessible via an API or file system) public class FactChecker { // Function to check the accuracy of a given statement public double CheckAccuracy(string statement) { // Use an API call or file access to pass 'statement' to the trained model in Python // Get the model's prediction and return the accuracy score // (This part might require inter-process communication or using a web service to interact with the Python model) return GetPredictionFromPythonModel(statement); } // Function to update the model based on user feedback public void UpdateModelWithFeedback(string statement, bool isAccurate) { // Send user feedback data to Python for retraining the model // This could involve sending the statement and accuracy label back to Python for retraining SendFeedbackToPython(statement, isAccurate); } // Other necessary functions to handle interactions with the trained model } using System; using System.Collections.Generic; class AIKnowledgeSystem { // Define learning goals and subjects the AI aims to improve upon List<string> learningGoals = new List<string>() { "Science", "Technology", "History", "Art", "Mathematics" }; // Define sources or repositories for data collection Dictionary<string, string> dataSources = new Dictionary<string, string>() { { "Science", "https://example.com/science-data" }, { "Technology", "https://example.com/tech-data" }, // ... define more sources for other subjects }; public void StartLearningProcess() { foreach (var subject in learningGoals) { // Data Collection string data = GatherDataFromSource(dataSources[subject]); // Data Preprocessing string preprocessedData = PreprocessData(data); // Knowledge Acquisition string insights = ExtractInsights(preprocessedData); // Update Knowledge Base UpdateKnowledgeBase(subject, insights); // Validation and Evaluation ValidateAndEvaluate(subject, insights); } // Continual Learning Loop - Simulated continuous learning while (true) { foreach (var subject in learningGoals) { string newData = GetNewData(subject); string preprocessedNewData = PreprocessData(newData); string newInsights = ExtractInsights(preprocessedNewData); UpdateKnowledgeBase(subject, newInsights); ValidateAndEvaluate(subject, newInsights); // Simulated adaptive learning strategies based on feedback bool userFeedback = GetUserFeedback(); if (userFeedback) { AdjustLearningStrategy(subject); } } // Simulated retraining and improvement RetrainAI(); // Monitoring and Maintenance (Simulated) MonitorLearningProcess(); } } // Simulated methods for the various stages private string GatherDataFromSource(string sourceUrl) { // Simulated data collection process return $"Data from {sourceUrl}"; } private string PreprocessData(string data) { // Simulated data preprocessing return $"Preprocessed: {data}"; } private string ExtractInsights(string preprocessedData) { // Simulated insight extraction using NLP return $"Insights from NLP: {preprocessedData}"; } private void UpdateKnowledgeBase(string subject, string insights) { // Simulated knowledge base update Console.WriteLine($"Updated {subject} knowledge base with: {insights}"); } private void ValidateAndEvaluate(string subject, string insights) { // Simulated validation and evaluation Console.WriteLine($"Validating {subject} insights: {insights}"); } private string GetNewData(string subject) { // Simulated method to get new data return $"New data for {subject}"; } private bool GetUserFeedback() { // Simulated method to get user feedback // For adaptive learning strategies return false; } private void AdjustLearningStrategy(string subject) { // Simulated adaptive learning strategy adjustment Console.WriteLine($"Adjusting learning strategy for {subject}"); } private void RetrainAI() { // Simulated retraining and improvement Console.WriteLine("Retraining AI..."); } private void MonitorLearningProcess() { // Simulated monitoring and maintenance Console.WriteLine("Monitoring learning process..."); } } class Program { static void Main(string[] args) { AIKnowledgeSystem ai = new AIKnowledgeSystem(); ai.StartLearningProcess(); } }// Using Stanford.NLP for basic language analysis // This requires installing and setting up the Stanford.NLP library in C# using System; using edu.stanford.nlp.simple; // Example library namespace class NLUExample { public void PerformNLU(string text) { Document doc = new Document(text); foreach (Sentence sent in doc.Sentences) { Console.WriteLine("Constituent parse: " + sent.Parse()); Console.WriteLine("Dependency parse: " + sent.DependencyGraph); Console.WriteLine("Entity mentions: " + sent.EntityMentions); // Perform more NLU tasks as needed } } }

Related: See More


Questions / Comments: